翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Krasovskii-LaSalle principle : ウィキペディア英語版
LaSalle's invariance principle
LaSalle's invariance principle (also known as the invariance principle, Barbashin-Krasovskii-LaSalle principle, or Krasovskii-LaSalle principle ) is a criterion for the asymptotic stability of an autonomous (possibly nonlinear) dynamical system.
== Global version ==

Given a representation of the system
: \dot(\mathbf x) \le 0 for all \mathbf x (negative semidefinite)
Let be the union of complete trajectories contained entirely in the set \. Then the set of accumulation points of any trajectory is contained in .
If we additionally have that the function V is positive definite, i.e.
: V( \mathbf x) > 0 , for all \mathbf x \neq \mathbf 0
: V( \mathbf 0) = 0
and if contains no trajectory of the system except the trivial trajectory \mathbf x(t) = \mathbf 0 for t \geq 0, then the origin is asymptotically stable.
Furthermore, if V is radially unbounded, i.e.
: V(\mathbf x) \to \infty , as \Vert \mathbf x \Vert \to \infty
then the origin is globally asymptotically stable.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「LaSalle's invariance principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.